Для чего нужен лямбда зонд после катализатора

Лямбда регулирование, катализатор и ГБО — Экономичные Технологии

В связи с жесткой конкуренцией и ужесточением экологических норм автопроизводители вынуждены постоянно совершенствовать свои автомобили. Двигатели, оснащенные карбюратором, уже не обеспечивали желаемой экономичности, экологичности и мощности автомобиля.

Это обусловлено невозможностью точной настройки карбюратора на различных режимах. Поэтому производителями при первой возможности была внедрена электронная система управления впрыском под управлением 8-ми битного микропроцессора с тактовой частотой 4 мгц в 1979г.

Это произошло через 8 лет после появления первого в мире 4-х битного микропроцессора 4004.

На данный момент, система управления двигателем является довольно сложной в плане количества датчиков и исполнительных механизмов, сложных математических моделей записанных в виде программы блока управления.

Переход на более точную систему управления стал возможным не только благодаря появлению микропроцессора. Пригодился и опыт построения автоматизированных систем на промышленных предприятиях накопленный десятилетиями.

На тот момент в ВУЗах уже давно появился предмет, без которого уже немыслима автоматизация процессов — Теория автоматического управления (ТАУ).

ТАУ — это наука, которая позволяет просчитать уровень и скорость воздействия сразу на некоторое количество элементов управления для получения предсказуемо точного результата в отведенное время. На основании ТАУ для промышленности была создана и теория управления двигателем.

В процессе развития электронных систем управления двигателем улучшалась их точность, а вместе с ними и характеристики двигателей.

Для того, что бы следовать все более жестким экономическим и экологическим параметрам, увеличивается количество узлов системы управления двигателем, улучшается точность их изготовления, увеличивается вычислительная мощность блоков управления двигателем для того, что бы использовать более точные и сложные модели управления и математику.

Так как механические элементы системы имеют допуски изготовления и свойство изнашиваться, то понадобился датчик, который мог бы прояснить реальную  картину по соотношению воздух — топливо. Так с конца 1970-х годов в автомобилях начали применять датчики кислорода (лямбда зонды).

Познавательная книга по теории управления.

Зачем нужен лямбда зонд? (датчик кислорода)

 Лямбда зонд позволяет постоянно отслеживать количество кислорода в выхлопных газах и вводить корректировку впрыска топлива для достижения лучшей экономичности и экологичности двигателя.

Циркониевый лямбда зонд 

Самый распространенный вариант — циркониевый лямбда зонд, который выдает сигнал о бедной или богатой смеси. Если смесь богатая — лямда зонд выдаст напряжение более 0,45В, если бедная — менее 0,45В.

Понятие бедной и богатой смеси связано с соотношением массы всасываемого в цилиндры двигателя воздуха к массе топлива. Условно соотношение выражается числом лямбда (уровень избытка кислорода).

Например, при числе λ (лямбда) = 1, соотношение массы воздуха к массе топлива составляет 14,7 кг воздуха / 1 кг топлива, что является наиболее экологичным соотношением. Такую пропорцию еще называют «стехиометрической смесью».

Таким образом, в простой системе управления с лямбда зондом, состав топливно-воздушной смеси постоянно колеблется возле λ = 1. Это происходит из-за того, что система управления пытается максимально приблизится к λ=1, а чувствительный элемент циркониевого лямбда зонда может показать только больше или меньше.

Циркониевый лямбда зонд обладает еще некоторыми важными параметрами, которые используются в более продвинутых системах управления с целью соответствия экологическим нормам евро-4 и выше.

Например, по внутреннему сопротивлению чувствительного элемента, выходного напряжения и сопоставляя эти параметры с другими параметрами системы,  можно судить о концентрации вредных химических элементов в выхлопе (CH, CO, H2) и температуре чувствительного элемента датчика кислорода.

Таким образом, системой управления могут быть предприняты меры по улучшению экологических показателей мотора.

Широкополосный лямбда зонд

Существуют 2 основных типа широкополосных лямбда зондов, которые отличаются по принципу считывания информации.

  1. 4-х проводный. Используется на автомобилях Toyota, Lexus, Subaru, Suzuki.
  2. 5-ти проводный (возможен 6-й провод для калибровочного резистора) имеет дополнительную камеру — кислородный насос. Используется обычно на немецких автомобилях.

У этих датчиков кислорода есть общая особенность — они не просто показывают бедную или богатую смесь, а способны измерить состав смеси в большом диапазоне.

Это позволяет более точно удерживать требуемый состав смеси. Так же становится возможным удерживать состав смеси λ не равный 1.

Это может потребоваться на переходных режимах или частичных нагрузках, что позволяет добиться лучшей экономичности и улучшить другие показатели.

https://www.youtube.com/watch?v=tGSFW_tP3w0

Принцип работы этих датчиков подробно описан во многих источниках. Поэтому останавливаться на нем мы не будем.

Задний лямбда зонд (за катализатором)

Для того, что бы понять смысл заднего лямбда зонда, кратко остановимся на работе катализатора. Автомобильный катализатор — устройство, которое преобразовывает выхлопные газы до относительно безвредного состояния.

Главным образом в катализаторе догорает недогоревшее в моторе топливо ( 2CO + O2 → 2CO2) и разложение оксида азота (2NOX → XO2 + N2), который получается при температурах горения выше положенного и избытке кислорода.

Реакции в нейтрализаторе возможны при его температуре примерно от 300 до 800 градусов. Так же на эффективность его работы и срок службы сильно влияет состав топливно — воздушной смеси, который удерживается передним лямбда зондом.

 Если горючая смесь будет богаче, то упадет эффективность нейтрализации СО и СН, если беднее — NOX.

Для того, что бы автомобиль всегда соответствовал нормам Евро-3 и выше, в выхлопную систему за катализатором был внедрен контролирующий датчик, который «подсказывает» водителю о выходе из строя катализатора. В этом случае на панели приборов загорается индикатор Check engine, а мотор переходит в аварийный режим работы.

Для еще большей эффективности каталитической реакции, в автомобилях с нормами евро-4 и выше, используются и показания заднего лямбда зонда B1S2. В таких автомобилях показания используются не только для диагностики, но и для более точной коррекции топливной смеси для того, что бы увеличить эффективность нейтрализации газов. 

Работа заднего лямбда зонда

Катализатор производит разложение оксида азота на азот и кислород. Производится и связывание свободного кислорода с недогоревшим топливом (из СО получаем СО2). В катализаторе так же протекает множество других сложных реакций.

Как следует из описанного выше, содержание кислорода за катализатором заметно меньше, чем его содержание до катализатора.

Способность катализатора накапливать и отдавать кислород определяет инерционность изменения содержания кислорода после катализатора.

Поэтому основным показателем исправного катализатора является преобладание напряжения с заднего лямбда зонда более 0,6В даже если напряжение переднего лямбды значительное время держится на низком уровне. 

На современных автомобилях задний лямбда B1S2 влияет так же и на топливные коррекции с целью обеспечить максимально оптимальную смесь для работы катализатора. Поэтому, эффективность катализатора напрямую влияет на расход топлива.

При снижении эффективности катализатора расход топлива растет.

Это происходит из за того, что количество кислорода, который может использовать катализатор уменьшается, а система пытается удержать его содержание, добавляя топлива за катализатором.

Например, на современных автомобилях (например Subaru и некоторых других), старение или отсутствие катализатора вызывает существенное увеличение расхода топлива — вплоть до 30%.

Кроме того, с помощью лямбда измеряется температура выхлопных газов за катализатором и ЭБУ стремиться разогреть холодный катализатор управляя подачей топлива и EGR так как время разогрева катализатора тоже регламентировано ЕВРО нормами (Температура определяется путем измерения сопротивления подогревателя лямбды и импеданса ее чувствительного элемента).

Признаком нормальной работы катализатора с нормами евро-4 и выше явлется удержание напряжения на заднем лямбда зонде в районе 0,6 … 0,7 вольт на стабильных режимах работы. При этом, топливные коррекции по задним B1S2 и передним B1S1 лямбда зондам должны быть около 0%.  При неправильной работе катализатора топливные коррекции по задним и передним датчикам могут сильно отличаться от нуля. 

Но не только напряжение от лямбда зонда и его динамические характеристики влияют на работу системы управления современного двигателя. Так как показания лямбда зонда зависят от состава прочих компонентов в выхлопных газах — система управления может косвенно определять их концентрацию.

Так же система может косвенно определять и температуру катализатора, которая примерно равна температуре лямбда зонда. От температуры лямбда зонда зависит внутренне сопротивление его чувствительного элемента и потолок формируемого напряжения.

По верхней и нижней полке напряжения ЭБУ может косвенно судить о концентрациях других примесей. 

Исходя из вышеописанного, следует, что современные системы управления двигателем умеют не только удерживать концентрацию кислорода за катализатором. Дополнительно удерживается температура каталитического нейтрализатора в требуемом диапазоне, косвенно отслеживается и удерживается содержание других примесей за катализатором.

К сожалению, катализатор имеет ограниченный ресурс. И в тот момент, когда автовладелец сталкивается с проблемой катализатора, у него есть выбор — приобрести новый катализатор или решить проблему другим способом.

Наш человек смотря на дымящиеся трубы заводов и стоимость катализатора, конечно же ищет альтернативный вариант. На современных автомобилях обмануть блок управления совсем не просто, так как в процессе участвует множество параметров с узким коридором.

Поэтому народные методы в виде проставок и резисторов с конденсаторами уже не годятся. Даже если эти методы и работают не некоторых автомобилях, то неизбежно растет расход топлива.

Ввиду этого, производители эмуляторов катализатора постоянно совершенствуют алгоритмы эмуляции для наиболее точного воссоздания всех требуемых параметров.

В современном эмуляторе катализатора эмулируются около 10 различных параметров: напряжения на различных режимах, динамические параметры, количество запасенного кислорода, эффективность катализатора, внутреннее сопротивление датчика, импеданс, время отсечки, реакция на манипуляцию педали газа, температура катализатора, режим прогрева, скорость реакции чувствительного элемента, изменение эффективности катализатора при изменении нагрузки.

Гбо и катализатор

Мы все чаще сталкиваемся с проблемами катализаторов на автомобилях оборудованных газобалонным оборудованием.

Обычно проблема вызвана не катализатором, а самим газобалонным оборудованием. Обратите внимание — если автомобиль работает на бензине продолжительное время без проблем — обратите внимание на ГБО.

Наиболее часто встречаются 3 причины появления кодов неисправности по катализатору на автомобилях с газом:

  • Неправильная настройка ГБО. решение простое — настройте ГБО;
  • нестабильное давление газа в рампе форсунок. Обычно вызванонеспособностью редуктора удерживать требуемое давление. Ошибки обычно появляются, когда запас газа в баллоне заканчивается. Решение — заменить редуктор или чаще заправляться;
  • Часто встречающаяся проблема — нестабильность работы газовых форсунок. Обычными методами диагностировать невозможно.
  • Проблема с газовыми форсунками часто появляется из-за нестабильности их работы, разброса параметров. Наиболее часто встречается залипание форсунок и разброс в производительности. Все параметры определялись нами специальным тестером газовых форсунок.

Напомню, что современная система управления очень требовательна к параметрам всех звеньев, поэтому, даже незначительный разброс параметров форсунок ведет к непредсказуемым результатам. Из-за разброса параметров блок управления не может адекватно откорректировать топливные коррекции.

Наиболее эффективная работа двигателя, работающего на пропане возможна при более раннем угле зажигания и более бедной смеси с соотношением 15,5 : 1 для пропана по сравнению со смесью для бензина 14,7 : 1.  При снандартной схеме с ГБО 4-го и 5-го поколения управление смесью производится бензиновым блоком управления, газовый блок управления только вносит корректировки для управления газовыми форсунками. 

В связи с этим, смесь при работе на газу удерживается по бензиновым стандартам, что влечет за собой нештатную работу катализатора и более быстрое его разрушение.

Читайте также:  Как проверить уровень масла в двигателе тойота

Источник: https://sdsauto.com/content/33-lyambda-regulirovanie-katalizator-i-gbo

Для чего нужен лямбда зонд?

Кратко:

Лямбда зонд устанавливается в любых транспортных средствах, приводимых в движение с помощью двигателей внутреннего сгорания. Лямбда зонд:

• Регулирует смесеобразование, удерживая расход топлива на максимально низком уровне.
• Обеспечивает катализатору оптимальные условия работы, что в итоге влияет на срок службы катализатора и низкий уровень токсичности выхлопа.

Подробно:

Подробное понимание того, как устроен и для чего нужен лямбда зонд никак не повлияет на обнаружение и устранение неисправности этого датчика, если вы внимательно будете следовать тем советам, которые мы даём в наших статьях.

Даже простое чтение статьи будет для вас пустой тратой времени, поскольку, когда у вас перегорает лампочка, вы не стремитесь понять, как она работает, а просто меняете её на новую. Ведь всё, что на самом деле нужно вам, это исправный автомобиль.

Поэтому, смело пропускайте эту статью и переходите к статьям, которые непосредственно расскажут вам, как проверить, подобрать и заменить ваш датчик.

Если же вы всё-таки решительно настроены вникнуть в суть работы лямбда зонда, желаем удачи.

Функция лямбда зонда в современном автомобиле.

На все автомобили, начиная с конца 80-х годов прошлого века, устанавливаются катализаторы, задачей которых является очищение выхлопных газов от вредных примесей.

Для оптимальной и эффективной работы катализатора необходимо подготовить строго определённое качество воздушно-топливной смеси для двигателя и проконтролировать качественные характеристики выхлопных газов, возникших в результате её сгорания. Эту функцию выполняет лямбда зонд.

Лямбда зонд – также называемый кислородным датчиком или датчиком кислорода – измеряет количество остаточного кислорода в выхлопных газах. Отсюда пошло основное название этого датчика – кислородный.

Исходя из количества остаточного кислорода, датчик посылает сигналы в электронный блок управления двигателем, который, в свою очередь, регулирует количество подаваемого топлива или, другими словами, изменяет качество воздушно-топливной смеси.

Именно поэтому так важна герметичность выхлопной системы в местах установки этих датчиков, поскольку, в результате подмеса воздуха извне параметры этих измерений нарушаются.

Идеальное соотношение воздуха и топлива в смеси обозначается греческой буквой λ (лямбда) и равняется приблизительно 15 к 1, где 15 частей это воздух, а 1 часть это топливо. Отсюда и пошло наиболее распространённое в России название датчика – лямбда зонд.

Лямбда зонд установлен в трубы выхлопной системы автомобиля так, чтобы его рабочие поверхности обтекали выхлопные газы. Эти рабочие поверхности состоят из многослойных материалов обеспечивающих тестирование смеси.

Тестирование смеси эффективно идёт только при высокой температуре рабочей поверхности, поэтому все современные датчики снабжены функцией принудительного прогрева.

Для подробного рассмотрения конструкции датчика обратитесь к схеме 1.

Первый (верхний, регулирующий) лямбда зонд.

До начала 2000-х годов на автомобиль устанавливался только один датчик. Этот датчик устанавливался на отрезок выхлопной трубы между двигателем и катализатором и впоследствии, после появления второго датчика, получил свои нынешние названия: первый датчик или верхний или регулирующий.

В задачу этого датчика входил вышеописанный процесс измерений и поскольку он устанавливается выше, чем второй этот датчик был назван верхним. Регулирующим он был назван по причине того, что именно он несёт основную нагрузку по регулированию воздушно-топливной смеси.

Этот же датчик принимает на себя главный удар раскалённых токсичных газов двигателя, ещё не очищенных от ядовитых примесей катализатором. За счёт этого он и выходит из строя в среднем в 5-7 раз чаще, чем второй датчик.

Второй (нижний, диагностирующий) лямбда зонд.

После 2000-х годов, дополнительно к Первому датчику, в автомобилях стали устанавливать ещё один, при этом местоположение Первого не изменилось. Второй датчик стали устанавливать на отрезок выхлопной трубы от катализатора до глушителя.

Задачей этого дополнительного датчика стала проверка качества очистки выхлопных газов, прошедших через катализатор. Он получил название «Второй» или «Нижний», поскольку устанавливался под днищем автомобиля.

Другим названием этого датчика стало «Диагностирующий», оно отражало его функциональную отличие от Первого датчика – проверять качество очистки выхлопных газов.

После появления Второго датчика блок управления рассчитывает параметры идеальной воздушно-топливной смеси на основании показаний их обоих. В результате удалось добиться дополнительного снижения расхода топлива и высочайшей степени очистки выхлопных газов от ядовитых примесей — 95%.

Следует заметить, что поскольку Второй датчик установлен после катализатора, где газы уже очищены от агрессивных примесей, он выходит из строя значительно реже и то в результате либо разрушения катализатора, либо в результате механического или термического повреждения.

Конструктивно оба датчика  очень похожи. Тем не менее они имеют ряд различий, обусловленных их функциональностью. В последние годы первые и вторые лямбда зонды стали также отличаться и конструктивно. В качестве регулирующих датчиков всё чаще применяются сложные и дорогостоящие широкополосные датчики, в то время как в качестве диагнотических по прежнему используют циркониевые лямбда зонды.

Схематичное обозначение местоположения лямбда зондов на современном автомобиле.

Все автомобили объёмом двигателя более 2-х литров имеют по два Первых датчика и два Вторых датчика. Установка четырех датчиков продиктована большей мощностью таких двигателей требующих наличия двух катализаторов. В последние годы, в связи с введением более строгих требований по выбросам, стали устанавливать до трёх катализаторов, а соответственно понадобился и пятый кислородный датчик.

Разновидности лямбда зондов.

Лямбда зонд из диоксида циркония является самым распространённым на сегодняшний день типом кислородных датчиков. Менее распространёнными датчиками является широкополосные датчики и датчики воздух — топливо.

Совсем редкими являются лямбда зонд их диоксида титана, которые постепенно вытесняются из-за своей дороговизны.

Источник: http://lambdazond.ru/articles/dlya-chego-nuzhen-lyambda-zond

Все о датчике кислорода – принцип работы, виды, предназначение лямбда-зонда

Лямбда-зонд (он же кислородный датчик или датчик концентрации кислорода) – это устройство, которое определяет, сколько кислорода содержится в отработавших газах. Подробнее о том, как работает и для чего нужен лямбда-зонд, читайте в нашей сегодняшней статье.

Известно, что ДВС автомобиля может работать максимально эффективно лишь в случае правильного количества топлива и воздуха в топливно-воздушной смеси в каждом рабочем режиме. От этого также зависит расход топлива и влияние на экологию. Именно для этих целей используется датчик кислорода. Что такое лямбда зонд вы теперь знаете, пришло время рассмотреть принцип его работы.

Для чего нужен лямбда-зонд в автомобиле

Если количества воздуха в смеси топлива и воздуха недостаточно, это приводит к тому, что угарный газ, а также углеводороды не окисляются в полном объеме. А вот в случае наличия слишком большого объема воздуха в вышеупомянутой смеси, не наблюдается полного разложения оксидов азота на кислород и азот.

Датчик кислорода – это одна из составляющих системы выпуска автомобиля. На некоторых машинах датчик лямбда зонд может устанавливать в двух экземплярах.

Один из них располагается в выпускной системе еще до катализатора (его также называют каталитическим нейтрализатором), а другой – после него.

Использование двух кислородных датчиков позволяет максимально эффективно следить за количеством воздуха в отработавших газах, благодаря чему нейтрализатор функционирует максимально действенно.

В наше время используется два вида датчиков концентрации кислорода:

  • двухточечный лямбда-зонд;
  • широкополосный кислородный датчик.

Особенности двухточечного датчика кислорода

Применение двухточечного лямбда-зонда может осуществляться как до катализатора, так и после него. Этот датчик определяет показатель избытка воздуха, для чего он использует данные о том, сколько кислорода содержится в отработавших газах.

Двухточечный лямбда-зонд – это керамический элемент, на двух сторонах которого нанесено покрытие, изготовленное из диоксида циркония. Для измерений применяется электрохимический метод. Одна часть электрода контактирует с атмосферой, а другая – с отработавшими газами.

Для чего нужен лямбда-зонд такого типа, вы уже знаете, но как он работает? Принцип его работы базируется на определении количества кислорода в атмосфере, а также выхлопных газах. Если количество кислорода отличается, на концах электрода возникает напряжение. Если топливо-воздушная смесь слишком бедная, напряжение уменьшается. В противном случае напряжение возрастает.

Далее происходит подача электрического импульса от лямбда-зонда в ЭБУ двигателя. После этого электронный блок управления запускает соответствующие системы, которые к нему подключены.

Широкополосный лямбда-зонд – что это и как он работает

Широкополосный датчик кислорода – это тот же лямбда-зонд, который используется в современных автомобилях. Он выполняет функции датчика катализатора, расположенного на «входе». В кислородном датчике такого типа определение показателя «лямбда» происходит с помощью применения силы входного тока.

Данный лямбда-зонд отличается от упомянутого выше датчика тем, что в его состав входит закачивающий и двухточечный керамические элементы. Закачивание – это процесс, в ходе которого происходит пропускание кислорода из выхлопных газов сквозь соответствующий элемент под влиянием заданной силы тока.

Широкополосный лямбда-зонд работает на базе принципа поддержания напряжения в 450 мВ, которое присутствует между электродами 2-точечного керамического элемента. Для этого корректируется сила тока закачивания.

Если количество кислорода в выхлопных газах падает, что является признаком слишком богатой топливо-воздушной смеси, между электродами увеличивается напряжение. После этого происходит отправка соответствующего сигнала в ЭБУ двигателя. Затем происходит формирование необходимой силы тока на закачивающем элементе.

Ток необходим для закачки в измерительный зазор, что приводит к нормализации напряжения. Сила тока – это мера количества кислорода в выхлопных газах. Анализ данного показателя происходит в ЭБУ, после чего выполняется соответствующее воздействие на элементы системы впрыска топлива.

Если смесь воздуха и топлива слишком бедная, широкополосный лямбда-зонд работает таким же способом. Отличается он в данном случае лишь тем, что в результате влияния тока кислород выкачивается из измерительного зазора.

Не забудьте изучить статью о том, как проверить датчик кислорода (лямбда-зонд).

Для обеспечения правильного функционирования датчика кислорода, необходима температура 300°С. Для этого лямбда-зонд оснащают специальным нагревателем. Теперь вы знаете, что такое лямбда-зонд, для чего нужен кислородный датчик и как он работает.

Источник: http://avtopub.com/vse-o-datchike-kisloroda-printsip-rabotyi-vidyi-prednaznachenie-lyambda-zonda/

Кислородные датчики: подробное руководство — Denso

Вы наверняка знаете, что в вашем автомобиле установлен кислородный датчик (или даже два!)… Но зачем он нужен и как он работает? На часто задаваемые вопросы отвечает Стефан Верхоеф (Stefan Verhoef), менеджер DENSO по продукту (кислородные датчики).

B: Какую работу выполняет датчик кислорода в автомобиле?
O: Датчики кислорода (также называемые лямбда-зондами) помогают контролировать расход топлива вашего автомобиля, что способствует снижению объема вредных выбросов.

Датчик непрерывно измеряет объем несгоревшего кислорода в выхлопных газах и передает эти данные в электронный блок управления (ЭБУ).

На основании этих данных ЭБУ регулирует соотношение топлива и воздуха в топливовоздушной смеси, поступающей в двигатель, что помогает каталитическому нейтрализатору (катализатору) работать более эффективно и уменьшать количество вредных частиц в выхлопных газах.

B: Где находится датчик кислорода?
O: Каждый новый автомобиль и большинство автомобилей, выпущенных после 1980 г., оснащены датчиком кислорода. Обычно датчик установлен в выхлопной трубе перед каталитическим нейтрализатором.

Точное местоположение датчика кислорода зависит от типа двигателя (V-образное или рядное расположение цилиндров), а также от марки и модели автомобиля.

Для того чтобы определить, где расположен датчик кислорода в вашем автомобиле, обратитесь к руководству по эксплуатации.

В: Почему состав топливовоздушной смеси нужно постоянно регулировать?
O: Соотношение «воздух — топливо» крайне важно, поскольку оно влияет на эффективность работы каталитического нейтрализатора, который снижает содержание оксида углерода (CO), несгоревших углеводородов (CH) и оксида азота (NOx) в выхлопных газах. Для его эффективной работы необходимо наличие определенного количества кислорода в выхлопных газах. Датчик кислорода помогает ЭБУ определить точное соотношение «воздух — топливо» в смеси, поступающей в двигатель, передавая в ЭБУ быстроизменяющийся сигнал напряжения, который меняется в соответствии с содержанием кислорода в смеси: слишком высокого (бедная смесь) или слишком низкого (богатая смесь). ЭБУ реагирует на сигнал и изменяет состав топливовоздушной смеси, поступающей в двигатель. Когда смесь слишком богатая, впрыск топлива уменьшается. Когда смесь слишком бедная — увеличивается. Оптимальное соотношение «воздух — топливо» обеспечивает полное сгорание топлива и использует почти весь кислород из воздуха. Оставшийся кислород вступает в химическую реакцию с токсичными газами, в результате которой из нейтрализатора выходят уже безвредные газы.

Читайте также:  За уставших профессиональных водителей будут штрафовать работодателей

В: Почему на некоторых автомобилях устанавливаются два кислородных датчика?
O: Многие современные автомобили дополнительно кроме датчика кислорода, расположенного перед катализатором, оснащаются и вторым датчиком, установленным после него.

Первый датчик является основным и помогает электронному блоку управления регулировать состав топливовоздушной смеси. Второй датчик, установленный после катализатора, контролирует эффективность работы катализатора, измеряя содержание кислорода в выхлопных газах на выходе.

Если весь кислород поглощается химической реакцией, происходящей между кислородом и вредными веществами, то датчик выдает сигнал высокого напряжения. Это означает, что катализатор работает нормально.

По мере износа каталитического нейтрализатора некоторое количество вредных газов и кислорода перестает участвовать в реакции и выходит из него без изменений, что отражается на сигнале напряжения. Когда сигналы станут одинаковыми, это будет указывать на выход из строя катализатора.

В: Какие бывают датчики?
О: Существует три основных типа лямбда-сенсоров: циркониевые датчики, датчики соотношения «воздух — топливо» и титановые датчики. Все они выполняют одни и те же функции, но используют при этом различные способы определения соотношения «воздух — топливо» и разные исходящие сигналы для передачи результатов измерений.

Наибольшее распространение получила технология на основе использования циркониево-оксидных датчиков (как цилиндрического, так и плоского типов). Эти датчики могут определять только относительное значение коэффициента: выше или ниже соотношение «топливо — воздух» коэффициента лямбда 1.

00 (идеальное стехиометрическое соотношение). В ответ ЭБУ двигателя постепенно изменяет количество впрыскиваемого топлива до тех пор, пока датчик не начнет показывать, что соотношение изменилось на противоположное. С этого момента ЭБУ опять начинает корректировать подачу топлива в другом направлении.

Этот способ обеспечивает медленное и непрекращающееся «плавание» вокруг коэффициента лямбда 1.00, не позволяя при этом поддерживать точный коэффициент 1.00.

В итоге в изменяющихся условиях, таких как резкое ускорение или торможение, в системах с циркониево-оксидным датчиком подается недостаточное или избыточное количество топлива, что приводит к снижению эффективности каталитического нейтрализатора.

Датчик соотношения «воздух — топливо» показывает точное соотношение топлива и воздуха в смеси.

Это означает, что ЭБУ двигателя точно знает, насколько это соотношение отличается от коэффициента лямбда 1.

00 и, соответственно, насколько требуется корректировать подачу топлива, что позволяет ЭБУ изменять количество впрыскиваемого топлива и получать коэффициент лямбда 1.00 практически мгновенно.

Датчики соотношения «воздух — топливо» (цилиндрические и плоские) впервые были разработаны DENSO для того, чтобы обеспечить соответствие автомобилей строгим стандартам токсичности выбросов. Эти датчики более чувствительны и эффективны по сравнению с циркониево-оксидными датчиками.

Датчики соотношения «воздух — топливо» передают линейный электронный сигнал о точном соотношении воздуха и топлива в смеси. На основании значения полученного сигнала ЭБУ анализирует отклонение соотношения «воздух — топливо» от стехиометрического (то есть Лямбда 1) и корректирует впрыск топлива.

Это позволяет ЭБУ предельно точно корректировать количество впрыскиваемого топлива, моментально достигая стехиометрического соотношения воздуха и топлива в смеси и поддерживая его.

Системы, использующие датчики соотношения «воздух — топливо», минимизируют возможность подачи недостаточного или избыточного количества топлива, что ведет к уменьшению количества вредных выбросов в атмосферу, снижению расхода топлива, лучшей управляемости автомобиля.

Титановые датчики во многом похожи на циркониево-оксидные датчики, но титановым датчикам для работы не требуется атмосферный воздух.

Таким образом, титановые датчики являются оптимальным решением для автомобилей, которым необходимо пересекать глубокий брод, например полноприводных внедорожников, так как титановые датчики способны работать при погружении в воду.

Еще одним отличием титановых датчиков от других является передаваемый ими сигнал, который зависит от электрического сопротивления титанового элемента, а не от напряжения или силы тока. С учетом данных особенностей титановые датчики могут быть заменены только аналогичными и другие типы лямбда-зондов не могут быть использованы.

В: Чем отличаются специальные и универсальные датчики?
O: Эти датчики имеют разные способы установки. Специальные датчики уже имеют контактный разъем в комплекте и готовы к установке. Универсальные датчики могут не комплектоваться разъемом, поэтому нужно использовать разъем старого датчика.

B: Что произойдет, если выйдет из строя датчик кислорода?
O: В случае выхода из строя датчика кислорода ЭБУ не получит сигнала о соотношении топлива и воздуха в смеси, поэтому он будет задавать количество подачи топлива произвольно. Это может привести к менее эффективному использованию топлива и, как следствие, увеличению его расхода. Это также может стать причиной снижения эффективности катализатора и повышения уровня токсичности выбросов.

B: Как часто необходимо менять датчик кислорода?
O: DENSO рекомендует заменять датчик согласно указаниям автопроизводителя.

Тем не менее следует проверять эффективность работы датчика кислорода при каждом техобслуживании автомобиля.

Для двигателей с длительным сроком эксплуатации или при наличии признаков повышенного расхода масла интервалы между заменами датчика следует сократить.

Ассортимент кислородных датчиков

• 412 каталожных номеров покрывают 5394 применения, что соответствует 68 % европейского автопарка.

• Кислородные датчики с подогревом и без (переключаемого типа), датчики соотношения «воздух — топливо» (линейного типа), датчики обедненной смеси и титановые датчики; двух типов: универсальные и специальные.

• Регулирующие датчики (устанавливаемые перед катализатором) и диагностические (устанавливаемые после катализатора).

• Лазерная сварка и многоэтапный контроль гарантируют точное соответствие всех характеристик спецификациям оригинального оборудования, что позволяет обеспечить эффективность работы и надежность при длительной эксплуатации.

В DENSO решили проблему качества топлива!

Вы знаете о том, что некачественное или загрязненное топливо может сократить срок службы и ухудшить эффективность работы кислородного датчика? Топливо может быть загрязнено присадками для моторных масел, присадками для бензина, герметиком на деталях двигателя и нефтяными отложениями после десульфуризации. При нагреве свыше 700 °C загрязненное топливо выделяет вредные для датчика пары.

Они влияют на работу датчика, образуя отложения или разрушая его электроды, что является распространенной причиной выхода датчика из строя.

DENSO предлагает решение этой проблемы: керамический элемент датчиков DENSO покрыт уникальным защитным слоем оксида алюминия, который защищает датчик от некачественного топлива, продлевая срок его службы и сохраняя его рабочие характеристики на необходимом уровне.

Дополнительная информация

Более подробную информацию об ассортименте кислородных датчиков DENSO можно найти в разделе Кислородные датчики, в системе TecDoc или у представителя DENSO.

Источник: http://www.denso-am.ru/novosti/novosti-po-produktam/2015/kislorodnye-datchiki-podrobnoe-rukovodstvo/

Что будет, если отключить лямбда зонд?

Лямбда-зонд — это датчик, который оценивает состав выхлопных газов во время работы автомобиля при разных нагрузках и скоростных режимах.

https://www.youtube.com/watch?v=gy-2qoN23qg

Он передает сигнал на главный блок управления двигателем, после чего оптимизируется состав топливо-воздушной смеси. Лямбда-зонд, или кислородный датчик (КД), находится в системе выхлопных газов перед катализатором.

При неисправности датчика или катализатора либо при превышении допустимых норм показателей на панели приборов загорается лампочка «check engine». Она свидетельствует о том, что нужно провести диагностику двигателя. В данном случае результат диагностики отобразит одну из трех вышеперечисленных причин. Для проверки используют специальные диагностические сканеры.

Отключение лямбда-зонда

Некоторых автолюбителей интересует, можно ли отключить КД. Теоретически сделать это возможно, но нежелательно.

Лямбда-зонд отключать не рекомендуется, потому что электронный блок управления (ЭБУ) двигателя включает автономный режим подачи топливо-воздушной смеси.

Это влияет на расход топлива в худшую сторону, приводит к увеличению токсических веществ в выхлопных газах. Если же ездить с отключенным или неисправным КД долгое время, то могут возникнуть следующие проблемы:

  • нагар на клапанах, что приводит к уменьшению продуваемости всасывающих и выхлопных каналов в ГБЦ, всасывающем коллекторе и выхлопном коллекторе, из-за чего снижается мощность автомобиля;
  • нагар в катализаторе, что даже может привести к его расплавлению, после чего двигатель будет глохнуть сразу после запуска;
  • нагар на поршнях, что может в итоге стать причиной капитального ремонта, как и вышеперечисленные неисправности.

В связи с вышеперечисленным вопрос, можно ли ездить с отключенным КД, имеет отрицательный ответ, ведь ни одному автомобилисту не хочется, чтобы с его транспортом возникали серьезные проблемы.

Отключение кислородного датчика возможно во время ремонта выхлопной системы. Но предварительно необходимо отсоединить клеммы аккумулятора, так как любое разъединение фишек детали записывается в ОЗУ блока управления, а на некоторых моделях автомобилей информация сразу отправляется в ПЗУ.

Стоит ли отключать лямбда-зонд?

Автолюбители со стажем отключают КД только в тех случаях, когда он пришел в негодность или произошло механическое повреждение проводов лямбда-зонда. Из-за этих проблем на блок управления будут передаваться непредсказуемые параметры, что приведет к неадекватному поведению автомобиля. К примеру, машина может начать терять тягу либо ее мощность снизится.

Также может увеличиться или уменьшиться топливо-воздушная смесь. Если же отключить датчик путем размыкания, то будет подаваться среднее значение параметров выхлопных газов, что позволит добраться до автосервиса для дальнейшей диагностики и выявления неисправности. Долго же ездить с отключенным КД не рекомендуется, как уже говорилось выше.

Неисправный датчик необходимо заменить.

Истории автовладельцев

Так как лямбда-зонд является достаточно «коварным» датчиком, то с ним может быть связано немало проблем. Часто при повышенном расходе топлива автовладельцы считают, что причина заключается именно в КД. Ниже приведены три истории владельцев легкового транспорта, которые наглядно демонстрируют проблемы и их решения.

История №1.

Алексей, пользователь автомобильного форума из Ростова, является обладателем автомобиля Mazda 3 с двигателем объемом 2,0 л. У него возникла проблема повышенного потребления топлива. Даже в спокойном режиме передвижения машина тратила по 15 литров на сотню километров.

Также на приборной панели горел «чек» ошибки, свидетельствующий о неисправности лямбда-зонда, как считал водитель. Новый датчик для его автомобиля стоит от 10 тысяч рублей, и Алексей не был готов потратить такие деньги.

Был вариант приобрести аналог детали марки BOSCH стоимостью 3 тысячи рублей, но он мог не подойти к автомобилю из-за сопротивления. Поэтому автовладелец начал искать другие методы решения проблемы. Он вспомнил, что полтора месяца назад начал заправлять авто на АЗС «Лукойл», после чего и загорелся «чек».

Знакомый посоветовал добавить в бак присадку, которая повышает октановое число бензина. Но в магазине автовладельца отговорили от этого, потому что есть большой риск спалить клапана. Зато Алексею посоветовали приобрести чистящую присадку, которая также заливается в бак. Еще он проверил уровень масла и долило его до должного уровня.

Читайте также:  Как снять стекло с фары ваз 2114

Бензин Алексей залил уже на другой заправке, после чего добавил присадку. Расход топлива снизился до 9,5 литров, а чек потух. Можно сделать вывод, что ошибка может возникать еще и из-за некачественного бензина, а не только из-за неисправностей выхлопной системы.

История №2.

Вторую историю поведал Сергей, который приобрел с рук автомобиль Opel Vectra A 1989 года выпуска. Расход топлива был слишком большой и достигал 12 литров на 100 км. Так как горела лампочка Check engine, то было принято решение провести диагностику. Она показала неисправность лямбда-зонда.

Сергей заменил кислородный датчик, это помогло, но лишь на две недели. После этого датчик снова пришел в негодность, и загорелся «чек». Автовладелец поставил уже «бэушный», чтобы не тратить много денег. Это также решило проблему ненадолго.

Сергей начал искать более подробную информацию и выяснил, что ранее на Vectra A устанавливались двигатели другого типа, а как раз начиная с 1989 года, были внедрены новые моторы. Конструктивно они ничем не отличались, но в старых двигателях лямбда-зонд не был предусмотрен, и использовалась другая прошивка.

Путем перепрошивки проблему удалось исключить, ведь блок управления теперь считал КД несуществующим.

https://www.youtube.com/watch?v=CxhGVt5_YUA

История №3.

Пользователь автомобильного форума Taylor из Краснодара жаловался на высокий расход топлива автомобиля ВАЗ. Он решил поменять лямбда-зонд, думая, что это поможет.

Но в итоге ему не удалось его отсоединить, и автолюбитель продолжил ездить с отключенным датчиком. Естественно, что проблема не была решена, хотя расход и несколько снизился.

Ситуация успешно разрешилась, когда человек поехал в автосервис, где ему установили новую деталь.

Видео

Источник: http://autoepoch.ru/avtoazbuka/chto-budet-esli-otklyuchit-lyambda-zond.html

Принцип работы лямбда зонда | Выхлоп-сервис

В современных системах управления впрыском топлива, едва ли не главную роль выполняет датчик содержания кислорода в выхлопных газах (Oxygen Sensor).

Его часто называют лямбда-зонд или О2-датчик, иногда — датчик выхлопа. Задача лямбда-зонда состоит в том чтобы преобразовывать информацию о содержании кислорода в выхлопных газах в эл.

сигнал, который, в свою очередь, считывается эл.блоком управления впрыском (ECU).

В современных двигателях оптимальной считается смесь с соотношением 14.7 частей воздуха к 1части топлива. Соотношение воздуха и топлива в составе топливной смеси определяется эл.блоком по полученным сигналам датчиков установленных на двигателе, качество же приготовленной смеси проверяется ECU по сигналам, введенного в обратную связь, датчика О2.

При излишне обогащенной или обедненной топливной смеси, эл.блок корректирует ее приготовление с учетом показаний лямбда-зонда. датчик О2 выполняет в системе впрыска топлива одну из основных функций, работа двигателя во многом зависит от его исправного состояния.

Самыми важными условиями работоспособности датчика содержания кислорода в выхлопных газах являются:

1. Обеспечение герметичности выхлопного тракта и непосредственно места установки датчика. При замене вышедшего из строя датчика О2 следует смазывать его резьбу специальной токопроводной смазкой для предотвращения заклинивания резьбового соединения. Не стоит применять для этого стандартные смазки, т.к.

они не являются токопроводными, а резьбовая часть датчика является для него эл.контактом. Некачественный контакт (или контакт с большим сопротивлением эл.току) приведет к неправильной работе
лямбда-зонда. В некоторых конструкциях предусмотрена установка герметизирующей шайбы.

Чаще всего эти шайбы являются одноразовыми и при демонтаже датчика подлежат замене.

2. Считается недопустимым попадание на корпус датчика тормозной или охлаждающей жидкости и других реактивов. Не следует применять для очистки его поверхности какие-либо растворители и активные моющие средства.

3. В связи с малыми рабочими токами, должны быть обеспечены надлежащие контакты в разъемах соединений эл.цепи и проводки датчика О2.

4. Существенно снизить ресурс лямбда-зонда может применение топлива, в состав которого входит высокое содержание свинца (эт.бензин).

5. К выходу из строя датчика может привести перегрев его корпуса. Перегрев может произойти из-за неправильно установленного угла опережения зажигания или сильно переобогащенной топливной смеси.

В свою очередь, топливная смесь может быть переобогащена из-за забитого воздушного фильтра, неисправного регулятора давления топлива в системе, неработающего датчика температуры охлаждающей жидкости и др.

Функционально лямбда-зонд работает, как переключатель и выдает напряжение выше порогового (0.45V) при низком содержании кислорода в выхлопных газах. При высоком уровне кислорода датчик О2 снижает это пороговое напряжение ECU. При этом, важным параметром является скорость переключения датчика.

В большинстве систем впрыска топлива О2-датчик имеет выходное напряжение от 40–100мВ. до 0.7–1В. Длительность фронта должна быть не более 120мСек.

Следует отметить, что многие неисправности лямбда-зонда контроллерами не фиксируются и судить о его исправной работе можно только после
соответствующей проверки.

Проверку работоспособности датчика О2 лучше всего производить с помощью осциллографа. На Рис.3 показан сигнал нормально работающего лямбда-зонда на прогретом двигателе, работающего на ХХ.

На Рис.4 показан выходной сигнал еще работающего, но изрядно послужившего и практически забитого датчика О2.

Данная осциллограмма зафиксировала падение амплитуды выходного сигнала ниже 0V, что говорит о неисправности датчика О2.

Данная неисправность датчика чаще всего фиксируется системой самодиагностики и на приборной панели загорается лампочка «CHECK ENGINE», которая сигнализирует о неисправности.

На Рис.5 представлена наиболее распространенная «болезнь» датчиков содержания кислорода в выхлопных газах, которая выражена в замедленной его реакции. Время фронта сигнала (t) значительно превышает 120 мСек.

Данная неисправность датчика неминуемо вызывает увеличенный расход топлива и заметное снижение динамики автомобиля, а система самодиагностики ее не зафиксирует, т.к. данный параметр не отслеживается контроллером.

Неисправности “замерзших» датчиков О2 не фиксируются контроллером, т.к.амплитудные значения сигналов не выходят из заданного для них диапазона. В большинстве систем впрыска топлива неисправности датчиков могут быть зафиксированы только при выходе их сигнала из этого заданного диапазона. Чаще всего это 0–1В.

Таким образом,однозначно фиксируется только полное отсутствие сигнала и его минусовое значение, в этих случаях ошибка индицируется лампой «CHECK ENGINE».

Однако, следует заметить, что в некоторых ECU предусмотрена возможность диагностики и обнаружения неисправности по косвенным признакам (соотношение показаний датчика скорости автомобиля или датчика положения коленвала, датчика положения дроссельной заслонки, расходомера воздуха и др.). В этих случаях индикация «СЕ» может быть включена.

При обнаружении неисправности О2-датчика, контроллер переходит в режим управления впрыском по усредненным параметрам и завышает обогащение

Ресурс датчика содержания кислорода в выхлопных газах обычно составляет от 30 до 70 тыс.км. и в значительной степени зависит от условий эксплуатации. Дольше служат, как правило, датчики с подогревом. Рабочая температура для них обычно 315–320ёC.

В конструкцию этих датчиков включен нагревающий элемент, имеющий на разъеме свои контакты. Проверку работоспособности нагревательного элемента таких датчиков можно производить обычным омметром. Сопротивление их обычно составляет от 3 до 15 Ом.

Демонтаж неисправного лямбда-зонда следует производить при температуре двигателя около 50ёC, в противном случае, из-за заклинивания, велик риск сорвать резьбу. Перед тем, как приступать к демонтажу, необходимо при выключенном зажигании отсоединить разъем датчика.

На некоторых автомобилях, чтобы снять датчик О2, необходимо демонтировать защитный кожух выпускного тракта.

Признаком неисправного лямбда-зонда может служить повышение расхода топлива и ухудшение динамики автомобиля, при этом возможен неустойчивый холостой ход двигателя.

В большинстве своем, сходные по конструкции датчики являются взаимозаменяемыми. Возможна и замена неподогреваемых на подогреваемые О2 (обратную замену я не рекомендую). Однако часто возникает проблема несовместимости разъемов и отсутствие дополнительных проводов питания для подогревающего элемента.

При этих заменах можно самостоятельно проложить дополнительные провода и подключить подогреватель к реле зажигания или реле эл.бензонасоса. При этом следует учитывать, что ток потребления подогревателя может составлять до 8–12А.

Если есть возможность, лучше эту цепь подключить через дополнительное реле и предохранитель, как показано на Рис.9.

На рис. показана схематика разъемов, которые чаще всего встречаются с распространенными датчиками содержания кислорода в выхлопных газах.

Цветовая маркировка проводов, разъемов (и их конструкция) могут различаться и зависят от предприятия (фирмы) изготовителя конкретного датчика или автомобиля. Однако замечено, что сигнальный провод О2 чаще бывает более темного цвета, чем его подогревателя.

Цветовая маркировка проводов подогревателя датчика, чаще всего бывает одноцветной (часто белого цвета), но отличной от сигнального провода.

В заключение хочу отметить, что датчик содержания кислорода в выхлопных газах устанавливается, как правило, в паре с катализатором. Многие автовладельцы считают, что они взаимосвязаны функционально и могут работать только в паре. Однако это не совсем так.

В большинстве автомобилей лямбда-зонд установлен на выхлопном тракте до катализатора.

В этом случае катализатор не может влиять на работу датчика, хотя обратная зависимость есть и заключается в том,чтобы система впрыска топлива регулировала топливную смесь не переобогащая ее, таким образом продляя срок службы катализатора.

Некоторые автовладельцы самостоятельно заменяют вышедший из строя катализатор на резонатор и отключают лямбда-зонд. В этом случае ECU работает по усредненным значениям и не может обеспечить оптимального приготовления состава топливной смеси. Кроме того, добиться низкого уровня содержания СО в выхлопных газах на таких автомобилях бывает весьма проблематично.

Часто в этих случаях после отклю чения аккумулятора работа двигателя становится неустойчивой и не всегда оптимизируется даже после значительного пробега автомобиля, т.к. не во всех ECU есть система коррекции режимов сохраняемых в оперативной памяти и, при отключении питания, ECU теряет эти значения.

Восстановление этих значений порой может быть дороже стоимости нового катализатора вместе с О2.

Бесконтрольность датчика О2 может привести к его полному разрушению, а ведь его основу составляют керамические пластины. Самым серьезным следствием отключенного лямбда-зонда может стать вышедший из строя двигатель, т.к.

на многих автомобилях из-за подрастянувшегося ремня ГРМ (и не только) могут не плотно быть закрыты выпускные клапана в начале обратного хода поршня.

В этот момент очень велик риск попадания керамики в камеру сгорания, а чем это грозит догадаться не трудно.

Если вы решили заменить катализатор на резонатор или просто его удалить, не стоит отключать лямбда-зонд, а если и он вышел из строя, то установите новый датчик. В автомобилях где лямбда-зонд установлен на катализаторе, дело обстоит еще сложнее, т.к.

О2 контролирует уже очищенный выхлоп. В этом случае, если удален катализатор (даже если сохранен О2), добиться оптимальной работы двигателя бывает достаточно трудно, т.к.

программа ECU может быть не рассчитана на более «грязный» выхлоп и часто воспринимает
это как неисправность лямбда-зонда.

Настоятельно рекомендую проверять работу датчика содержания кислорода в выхлопных газах не реже одного раза через каждые 5000–10000 км. пробега автомобиля. Решением данной проблемы контроля может стать установленный на приборной панели индикатор работы лямбда-зонда.

Vladimir Kalinovsky Corsa Automotive 2307 McDonald Ave Brooklyn, NY 11223 (718) 998–0770 fax (718) 627–7312

Внимание! Проверку работы датчика содержания кислорода в выхлопных газах следует проводить на прогретом двигателе и частоте вращения коленвала на оборотах обычного Х.Х.+1200. Щуп осциллографа необходимо подключать к сигнальному проводу О2 не отключая датчик от контроллера.

Источник: https://negudit.ru/novosti/poleznaya-informaciya/princip-raboty-lyambda-zonda

Ссылка на основную публикацию
Adblock
detector